+ 86-574-88452652
Home / Products

Hydraulic Solenoid Manufacturers

  • MFZ1 Solenoid for Hydraulics
    MFZ1 Solenoid for Hydraulics
    MFZ1 Solenoid for Hydraulics

    MFZ1 Solenoid for Hydraulics

    Code/Parameters

    MFZ1-2.5YC

    MFB1-2.5YC

    MFZ1-4YC

    MFB1-4YC

    MFB1-5.5YC

    MFZ1-5.5YC

    MFZ1-7YC

    MFB1-7YC

    Rated Voltage(V)

    12/24/110/220

    110/220

    12/24/110/220

    110/220

    110/220

    12/24/110/220

    12/24/110

    110/220

    Rated Force(N)

    ≥25

    ≥25

    ≥40

    ≥40

    ≥55

    ≥55

    ≥70

    ≥70

    Rated Stroke(mm)

    3

    3

    6

    6

    4

    4

    7

    7

    Full Stroke(mm)

    ≥6.2

    ≥6.2

    ≥12

    ≥12

    ≥8.5

    ≥8.5

    ≥10.5

    ≥10.5

    Rated Power(W)

    ≤26

    ≤26

    ≤40

    ≤40

    ≤40

    ≤40

    ≤40

    ≤40

    Rated Pressure(MPa)

    6.3

    Frequency of operation(T/h)

    7200

    7200

    7200

    7200

    7200

    7200

    3600

    3600

    ×
  • MFZ3 Solenoid for Hydraulics
    MFZ3 Solenoid for Hydraulics
    MFZ3 Solenoid for Hydraulics

    MFZ3 Solenoid for Hydraulics

    Code/Parameters

    MFZ3(B3)-22YC

    MFZ3(B3)-37YC

    MFZ3(B3)-90YC

    MFJ3-18YC

    MFJ3-27YC

    MFJ3-54YC

    Rated Voltage(V)

    DC6-110V,AC110-380V

    Rated Force(N)

    22

    37

    90

    18

    27

    54

    Rated Stroke(mm)

    2.8

    2.8

    3.6

    2.8

    2.8

    3.6

    Full Stroke(mm)

    ≥6.1

    ≥6.1

    ≥7.8

    ≥6.1

    ≥6.

    ≥7.8

    Rated Pressure(MPa)

    16

    16

    21

    10

    16

    21

    Instal

    Screw

    4-M4

    4-M4

    4-M5

    4-M4

    4-M4

    4-M5

    Pitch-row(mm)

    28×28

    28×28

    58.7×68.2

    28×28

    28×28

    58.7×68.2

    Rated Power(W)

    ≤30

    ≤30

    ≤36

    ≤24

    ≤30

    ≤40

    Insulation Class

    F Class(Class H is available on request)

    ×
  • MFZ5 Solenoids for hydraulics
    MFZ5 Solenoids for hydraulics
    MFZ5 Solenoids for hydraulics

    MFZ5 Solenoids for hydraulics

    Parameters\Code

    MFZ5-20YC

    MFZ5-20YP

    MFZ5-90YC

    NFB-33VG

    MFJ5-50YC

    Rated Voltage(V)

    24

    24

    100/200

    100/200

    Rated Force(N)

    ≥20

    ≥90

    ≥35

    ≥50

    Bated Stroke(mm)

    3

    4

    3

    4

    Full Stroke(mm)

    ≥6.5

    ≥8.5

    ≥6.5

    ≥8.5

    Rated Pressure(MPa)

    21MPa

    Bated Power(W)

    ≤33

    ≤37

    ≤18

    ≤22

    Insulation Class

    F Class(Class H is available on request)

    Class H

    Thread

    M20×1

    M24×1

    M20×1

    M24×1

    ×
  • MFZ8 DC Solenoid for Hydraulics
    MFZ8 DC Solenoid for Hydraulics
    MFZ8 DC Solenoid for Hydraulics

    MFZ8 DC Solenoid for Hydraulics

    Code/Parameters

    MFJ8X-27YC

    MFJ8X-54YC

    MFZ8X-37YC

    MFZ8X-90YC

    Rated Voltage(V)

    110 220

    110 220

    12 24

    12 24

    Rated Force(N)

    ≥27

    ≥54

    ≥37

    ≥90

    Rated Stroke(mm)

    3

    4

    3

    4

    Full Stroke(mm)

    ≥6.5

    ≥8.5

    ≥6.5

    ≥8.5

    Rated Pressure(MPa)

    21MPa

    Rated Power(W)

    ≤17

    ≤26

    ≤30

    ≤41

    Insulation Class

    Class H

    F Class(Class His available on request)

    Thread

    M20×1

    7/8"-20UNF

    M20×1

    7/8'-20UNF

    ×
  • MFZ9 DC Solenoids for Hydraulics
    MFZ9 DC Solenoids for Hydraulics
    MFZ9 DC Solenoids for Hydraulics

    MFZ9 DC Solenoids for Hydraulics

    Code/Parameters

    MFZ9-22YC

    MF8-37Y8

    MF8-0Y8

    MFJ9-27YC

    MFJ9-54YC

    Rated Voltage(V)

    DC6-220V,AC110-380V

    Rated Force(N)

    ≥22

    ≥37

    ≥90

    ≥27

    ≥54

    Rated Stroke(mm)

    2.8(3)

    2.8(3)

    3.6(4)

    2.8(3)

    3.6(4)

    Full Stroke(mm)

    ≥6.5

    ≥6.5

    ≥8.5

    ≥6.5

    ≥8.5

    Rated Pressure(MPa)

    21MPa

    Rated Power(W)

    ≤30

    ≤30

    ≤4C

    ≤26

    ≤40

    Insulation Class

    F Class(Class H is available on request)

    Thread

    M20×1

    M20×1

    M26x1.5

    M20×1

    M26×1.5

    ×
  • MFZ10 DC Solenoid for Hydraulics
    MFZ10 DC Solenoid for Hydraulics
    MFZ10 DC Solenoid for Hydraulics

    MFZ10 DC Solenoid for Hydraulics

    Code/Parameters

    MFZ10-20YC

    MFZ10-22YC

    MFZ10-25YC

    MFZ10-37YC

    MFB10-37YC

    MFZ10-80YC

    MFB10- 80YC

    MFZ10-90YC

    MFB10-90YC

    MFJ10-27YC

    MFJ10-54YC

    Z10-25YD

    Z10-70Y

    Rated Voltage(V)

    12 28 36 110 220

    12 24 110 220

    12 24 110 220

    12 24 110 220

    12 24 110 220

    12 24 110 220

    110 220

    110 220

    DC24(customizable)

    DC24(customizable)

    Rated Force(N)

    ≥20

    ≥22

    ≥25

    ≥37

    ≥80

    ≥90

    ≥27

    ≥54

    ≥25

    ≥70

    Rated Stroke(mm)

    2

    2.8(3)

    2.8

    2.8(3)

    3.6(4)

    3.6(4)

    2.8(3)

    3.6(4)

    2.8

    4

    Full Stroke(mm)

    ≥4

    ≥6

    ≥6

    ≥6

    ≥8

    ≥8

    ≥6

    ≥8

    ≥6.1

    ≥9

    Rated Pressure(MPa)

    21MPa

    Rated Power(W)

    ≤29

    ≤33

    ≤26

    ≤30

    ≤50

    ≤37

    ≤28

    ≤37

    ≤26

    ≤38

    Insulation Class

    F Class(Class His available on request)

    IP Class

    IP65(IP67 or IP69 are also available on request)

    Thread

    M15x1

    M20x

    M20×1

    M20×1

    M26X1.5

    M26x1.5

    M20x1

    M26×1.5

     

     

    *The inner hole of MFZ10-8OYC coil is only 31.3   MFZ10-90YC coil has two types of inner holes, 31 and 31.3, with a default of 31mm

    ×
  • MFZ11 DC Solenoid for Hydraulics
    MFZ11 DC Solenoid for Hydraulics
    MFZ11 DC Solenoid for Hydraulics

    MFZ11 DC Solenoid for Hydraulics

    Parameters/Code

    MFZ11-40YC

    MFJ11-28YC

    MEJ11-52YC

    MFZ11-95YC

    Rated Voltage(V)

    12 24 RF240/120

    120 220 240

    110 120 220 240

    12 24 RF 120/240

    Rated Force(N)

    ≥40

    ≥28

    ≥52

    ≥95

    Rated Stroke(mm)

    2.8

    2.8

    4

    4

    Full Stroke(mm)

    ≥6.5

    ≥6.5

    ≥8.5

    ≥8.5

    Rated Pressure(MPa)

    21MPa

    Rated Power(W)

    ≤33

    ≤30

    ≤36

    ≤42

    Insulation Class

    F Class(Class H is available on request)

    Thread

    M20×1

    M20×1

    M24×1.5

    M24×1.5

    ×
  • MFZ12 DC Solenoid for Hydraulics
    MFZ12 DC Solenoid for Hydraulics
    MFZ12 DC Solenoid for Hydraulics

    MFZ12 DC Solenoid for Hydraulics

    Code/Parameters

    MFZ12-40YC

    MFZ12-95YC

    MFJ12-26YC

    MFJ12-50YC

    Rated Voltage(V)

    12 24 110 220

    12 24 110 220

    110 220

    110 220

    Rated Force(N)

    ≥40

    ≥95

    ≥26

    ≥50

    Rated Stroke(mm)

    3

    4

    3

    4

    Full Stroke(mm)

    ≥6.2

    ≥8.5

    ≥6.2

    ≥8.5

    Rated Pressure(MPa)

    21MPa

    Rated Power(W)

    30

    ≤36

    ≤30

    ≤40

    Insulation Class

    F Class(Class H is available on request)

    Thread

    M20×1

    M24×1.5

    M20×1

    M24×1.5

    ×
  • MFZ13 DC Solenoid for Hydraulics
    MFZ13 DC Solenoid for Hydraulics
    MFZ13 DC Solenoid for Hydraulics

    MFZ13 DC Solenoid for Hydraulics

    Code/Parameters

    MFZ13-22YC

    MFZ13-35Y*

    MFZ13-75Y*

    Rated Voltage(V)

    12 24

    12 24 110 220

    12 24 110 220

    Rated Force(N)

    ≥22

    ≥35

    ≥75

    Rated Stroke(mm)

    2.8

    2.8

    4

    Full Stroke(mm)

    ≥6.5

    ≥6.5

    ≥8.5

    Rated Pressure(MPa)

    21MPE

    Rated Power(W)

    ≤28

    ≤30

    ≤36

    Insulation Class

    F Class(Class His available on request)

    Thread

    M20×1

    M20×1

    M24×1.5

    ×
  • DS3049 Double Headed Proportional Solenolds
    DS3049 Double Headed Proportional Solenolds
    DS3049 Double Headed Proportional Solenolds

    DS3049 Double Headed Proportional Solenolds

    Code Parametes

    Rated

    Current(A)

    Rated

    Force(N)

    Rated

    Stroke(mm)

    Full Stroke

    (mm)

    Duty Cycle(%) 

    Rated Hesistance(Ω) 

    Rated Force Hysteresis(%)

    Rated Curre Hysteresis(%)

    Repeat

    Accuracy(%) 

    Pressure

    Tightness(MPa) 

    DS3049

    0.63

    24N

    1.3

    1.7

    100

    27.2

    ≤5

    ≤2

    ≤1

    21

    ×
  • GV32 Proporional Solenoids tor Carridge Solenoid Valves
    GV32 Proporional Solenoids tor Carridge Solenoid Valves
    GV32 Proporional Solenoids tor Carridge Solenoid Valves

    GV32 Proporional Solenoids tor Carridge Solenoid Valves

    Code Parametes

    Rated Current(A)

    Rated Force(N)

    Rated Stroke(mm)

    Full Stroke (mm)

    Duty Cycle(%) 

    Rated Hesistance(Ω) 

    Rated Force Hysteresis(%)

    Rated Curre Hysteresis(%)

    Repeat

    Accuracy(%)

    Pressure
    Tightness(MPa)

    Degree of
    protection

    Insulation

    class

    HMGP15

    0.8

    32N

    1.3

    2.3

    100

    17.5

    ≤6

    ≤4

    ≤1

    16

    IP65

    Class H

    GP32/P17
    (SKY5P-17-A)

    0.7

    28N

     

     

    100

     

    ≤6

    ≤4

    ≤1

    16

    P65

    Class H

    GP32/G24
    (SKY5-G24-A)

    24

    30N

    1.3

    2.3

    100

    17.5

    ≤6

    ≤4

    ≤1

    16

    P65

    Class H

    ×
  • GP61 Proportional Solenoid for Hydraulics
    GP61 Proportional Solenoid for Hydraulics
    GP61 Proportional Solenoid for Hydraulics

    GP61 Proportional Solenoid for Hydraulics

    ×
About us
Ningbo Yinzhou TONLY Hydraulic Electrical Factory
Ningbo Yinzhou TONLY Hydraulic Electrical Factory

Ningbo Yinzhou Tonly Hydraulic Electrical Factory was established in 1989, which is a professional manufacturer of various On/Off and proportional solenoids for hydraulics. The factory is 10000m2. Thereinto, architecture covers 7000m2. As a famous China Hydraulic Solenoid Manufacturers and Hydraulic Solenoid Factory, the factory owns advanced high-precision CNC lathes, an automatic stitch welding machine, a BMC plastic package machine controlled by PLC, a plastic injection molding machine, a solenoid features tester, a solenoid tube oil-pressure-resistant test stand, a solenoid tube pulse fatigue test stand, an excitation coil parameters, and other testers. Through importing, absorbing, and technical upgrading. At present, we have an annual production capacity of 2,4 million pieces of hydraulic solenoids. All the products are produced according to JB/T5244-2001, VDE0580 standard and satisfy international advanced technical requirements. The performance is reliable and the quality is steady. Matched with REXROTH type, Northman type, YUKEN type, and VICKERS type, the products can be widely applied in machine tools, plastics machinery, engineering, aerospace, automotive, post and telecommunications, etc. The products are sold to the mainland, United States, Sweden, Korea, Taiwan, and other countries and regions.

Certificate Of Honor
  • Certificate
  • Certificate
  • Certificate
  • Certificate
  • Certificate
  • Certificate
  • Certificate
  • Certificate
  • Certificate
  • Certificate
  • Certificate
  • Certificate
News
Message Feedback
Products Industry knowledge

1. Function and design of hydraulic solenoid valves
Hydraulic solenoid valves work by converting electrical energy into mechanical motion, thereby opening and closing the valve mechanism that controls the flow of fluid. The core component of the solenoid valve is the solenoid coil. When current passes through the solenoid coil, it generates a magnetic field, causing the plunger to move. This movement opens or closes the valve, thereby regulating the passage of fluid.
There are many variations in the design of hydraulic solenoid valves to suit different application requirements, including direct-acting and pilot-operated solenoid valves. Direct-acting solenoid valves can work without external pressure assistance and are ideal for low-flow and low-pressure scenarios. In this design, when current passes through the solenoid coil, the magnetic field immediately pushes the plunger, directly controlling the opening or closing of the valve. The advantages of this design are fast response and simple structure, but its applicability in high-pressure and high-flow applications is limited.
In contrast, pilot-operated solenoid valves use system pressure to assist the actuation of the valve, which is suitable for high-pressure and high-flow scenarios. In the pilot design, the solenoid coil controls a small pilot valve. When the pilot valve is open, the system pressure acts on the main valve to push it open or closed. In this way, the pilot operated solenoid valve can achieve high flow control under high pressure conditions while keeping the power consumption of the solenoid coil low. The advantage of this design is that it can handle higher flow and pressure while reducing the load and energy consumption of the solenoid coil.
The design of hydraulic solenoid valves can also be customized according to specific application requirements. For example, in some applications that require extremely high precision and fast response, a proportional solenoid valve can be selected. Proportional solenoid valves are able to provide continuous, variable flow control rather than simple on-off functions. This design allows for more detailed and efficient control in complex systems.
Another key design consideration for hydraulic solenoid valves is the choice of materials. Since many hydraulic systems operate in harsh industrial environments, solenoid valves must have high durability and corrosion resistance. Modern hydraulic solenoid valves are usually manufactured from materials such as stainless steel, aluminum alloys and high-strength plastics to ensure their reliability and long life under extreme conditions.
The installation and maintenance of hydraulic solenoid valves are also important aspects of their design. The modular design and easy maintenance characteristics make these valves quick and easy to repair when they fail or need to be replaced. This not only improves the overall reliability of the system, but also reduces downtime, thereby improving production efficiency.
The function and design of hydraulic solenoid valves are an integral part of modern fluid control systems. Its diverse design and material selection enable it to adapt to a variety of application requirements, from low pressure and low flow to high pressure and high flow, from simple switch control to precise proportional control, hydraulic solenoid valves play a key role in industrial automation.

2. Application and advantages of hydraulic solenoid valves
Hydraulic solenoid valves are widely used in various industries, including manufacturing, automotive industry, aerospace, and construction. In manufacturing, they are essential for controlling the flow of hydraulic fluid in machinery, ensuring smooth and precise operation. For example, in fields such as injection molding and metal processing, hydraulic solenoid valves are used to control the movement and position of machines, making the production process more automated and efficient.
In the automotive industry, hydraulic solenoid valves are used in transmission systems and braking mechanisms to improve vehicle performance and safety. Modern vehicles rely on complex hydraulic systems to control transmissions, brakes, and steering systems. Hydraulic solenoid valves achieve precise operation and fast response of these systems by precisely controlling fluid flow, thereby improving the overall performance and driving experience of the vehicle.
The demand for hydraulic solenoid valves in the aerospace field is also very high. Many critical systems on aircraft, including landing gear, flaps, and rudders, rely on hydraulic systems for operation. Hydraulic solenoid valves play an important role in these systems to ensure the safe and reliable operation of aircraft. Due to the high requirements of aerospace applications, hydraulic solenoid valves must have high precision, high reliability and the ability to withstand extreme conditions.
In the construction industry, hydraulic solenoid valves are widely used in heavy equipment and construction machinery, such as excavators, bulldozers and cranes. These equipment need to maintain efficient operation under various working conditions. Hydraulic solenoid valves control the flow of hydraulic fluid to achieve precise control and efficient operation of the equipment. This not only improves construction efficiency, but also ensures the safety and stability of the construction process.
The main advantages of hydraulic solenoid valves include precise control, reliability and versatility. Its ability to provide fast response time and accurate fluid control makes it suitable for applications that require high precision. For example, in medical equipment, hydraulic solenoid valves are used to control the delivery of tiny flows of liquid medicine, ensuring the safety and effectiveness of the treatment process.
The reliability of hydraulic solenoid valves comes from their rugged design and high-quality material selection. They are generally designed for long-term trouble-free operation, reducing the need for maintenance and replacement. For example, on industrial automation production lines, hydraulic solenoid valves can maintain stable performance under high load and high-frequency operation, reducing production downtime and improving production efficiency.
The versatility of hydraulic solenoid valves enables them to adapt to a wide range of application needs. Through different designs and configurations, they can be used in a variety of scenarios from simple on-off control to complex proportional control, from low pressure and low flow to high pressure and high flow. This diverse application capability makes hydraulic solenoid valves an indispensable component in modern industrial systems.
The wide application and significant advantages of hydraulic solenoid valves in various industries prove their important position in modern fluid control systems. They not only provide precise and reliable fluid control, but also meet the needs of various complex applications through their versatility and efficiency.

3. Advances in hydraulic solenoid valve technology
In recent years, the advancement of hydraulic solenoid valve technology has focused on improving efficiency, control capabilities and integration with modern digital systems. Innovations include the development of proportional solenoid valves, which provide variable flow control rather than simple on-off functions. This advancement makes it possible to achieve more detailed and efficient control in complex systems.
The emergence of proportional solenoid valves is a big leap in hydraulic solenoid valve technology. Traditional on-off solenoid valves can only provide simple on-off operations, while proportional solenoid valves can accurately adjust fluid flow according to changes in input signals. This makes proportional solenoid valves very useful in applications that require precise flow control, such as in hydraulic servo systems, where the flow and pressure of hydraulic oil can be continuously controlled by adjusting the current of the solenoid coil to achieve precise control of the actuator.
With the integration of digital control systems and Internet of Things (IoT) technology, the application of hydraulic solenoid valves has also ushered in new development opportunities. Intelligent hydraulic solenoid valves are capable of remote monitoring and control, providing real-time system performance data, and enabling predictive maintenance. This integration not only improves operational efficiency and reduces downtime, but also extends the service life of the hydraulic system.
A notable feature of intelligent hydraulic solenoid valves is their built-in sensors and communication modules. These sensors can monitor the status and working conditions of the valves in real time, such as fluid pressure, flow, and temperature. Through the connection with the control system, these data can be analyzed and processed in real time, helping operators to promptly identify and solve potential problems. In addition, through the remote access function, operators can monitor and adjust the hydraulic system anytime and anywhere, improving the flexibility and responsiveness of the system.
Advances in materials science have also greatly promoted the development of hydraulic solenoid valve technology. The application of modern materials such as high-strength alloys, corrosion-resistant stainless steel, and high-performance plastics enables hydraulic solenoid valves to work in more demanding environments. For example, in the marine and chemical industries, hydraulic solenoid valves need to operate for a long time in highly corrosive environments. The use of new materials not only improves the durability and reliability of the valves, but also reduces the frequency of maintenance and replacement, thereby reducing operating costs.
In addition to advances in materials and control technology, the design of hydraulic solenoid valves has also become more modular and standardized. This design trend makes valve manufacturing and maintenance more convenient, while also improving system compatibility and scalability. Modular design allows for rapid replacement and upgrading of different functional modules, thereby shortening system downtime and enabling flexible configuration of system functions according to specific needs.